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Saffman-Taylor fingers with adverse anisotropic surface tension
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Viscous fingering in a linear channel is investigated analytically in the presence of adverse anisotropy,
i.e., when the directions of easy growth are at angle 7/m away from the direction of the cell axis because
of the anisotropy of the surface tension. The study is made in the limit of small surface tension and for a
finger width which is around one-half of the cell width. The analytical investigation reveals the existence
of an exceptional solution for the Saffman-Taylor finger which does not belong to the standard manifold.
The origin of this exceptional solution is clarified by a WKB analysis of the problem. This finger has a
width which grows with velocity in contrast with the standard situation. This is in agreement with ex-
perimental observation for the stable fingers and for the averaged unstable ones.

PACS number(s): 68.10. —m, 47.20.Hw

I. INTRODUCTION

Saffman-Taylor fingering [1] is a most fascinating ex-
ample of pattern selection. Indeed it is very accessible ex-
perimentally, and the theoretical situation does not look
complicated once it is realized that surface tension is re-
sponsible for the selection [2]. Yet despite the apparent
simplicity of the basic situation, Saffman-Taylor fingers
provide a very rich physical situation because almost any
small modification of this basic system seems to lead to
new features in the selection process. More specifically
Saffman and Taylor explored the case of a linear Hele-
Shaw cell and found that, for large velocity, the finger
width A relative to the cell width goes to the limiting
value A=1. This limiting case seems actually fairly un-
stable since it is drastically modified under various small
perturbations. For example, a small object [3] placed in
front of the finger produces a narrow finger with A much
less than 1. Similarly the replacement of the linear cell
by a divergent sector [4] leads to a strong modification of
the spectrum for the allowed finger width [S]. Finally
Dorsey and Martin [6] showed that, in a linear cell, an
anisotropy in the surface tension produced a finger width
going to zero for large velocities. This anisotropy in the
surface tension is reminescent of the physical situation
found in solidification problems. Experimentally it is
realized in a Hele-Shaw cell by engraving the plates for
example.

In the present paper we are interested in a physical sit-
uation which is quite similar to the one considered by
Dorsey and Martin. Indeed in their case the anisotropy
of the surface tension was such that the surface tension is
minimal at the tip of the finger. Precisely they investigat-
ed a surface tension T(0) given by T(0)
=T[1—28cos(m0)] with 6 being the angle between the
normal n to the interface and the cell axis, and 8§ a posi-
tive constant. A surface tension minimal at the tip of the
finger leads to a small radius of curvature at this tip, and
one can guess intuitively that this produces narrow
fingers as proved indeed by Dorsey and Martin. Here we
are interested in the case of “‘negative” or “adverse” an-
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isotropy where the modulation of the surface tension is of
the opposite sign and gives a surface tension maximal at
the tip of the finger: T(60)=T[1+26cos(m6)] and & still
a positive constant. In this case the radius of curvature
at the tip of the finger will be larger than in the standard
case and one expects a fat finger which moves less rapidly
than the standard one. Our motivation for studying this
case is the experiment performed in this geometry which
gives results [7,8] markedly different from the ones ob-
tained for positive anisotropy, and very surprising by
themselves. Indeed when the velocity of the finger gets
larger, its width increases toward the full cell width
whereas one would expect the finger to have a decreasing
width, because a narrow finger can move faster than a
wide one as it has less viscous fluid to displace. This re-
sult is in sharp contrast with the previously investigated
cases where, as one might expect, the width of the aver-
age finger always decreases with the finger velocity.

There is, however, some qualitative difference between
the experimental situations for positive and for negative
anisotropy. In the range of large velocities which will be
of interest for us, the finger becomes unstable and one ob-
tains a fractal structure [9]. Previous experimental stud-
ies of these kinds of situations have shown a quite re-
markable and surprising result both for the isotropic [10]
and the anisotropic cases [7]: when one performs a prop-
er average of different realizations of fractal growth, the
result has the same shape and follows the same selection
rules as the corresponding stable finger. Though there
has been some progress in making sense of this result by
the use of a modified mean field theory [11], it is not fully
understood. Nevertheless we will heavily rely on it in or-
der to relate our theoretical analysis to experiment since
we will assume that the selection of the averaged unstable
finger can be obtained from the selection of the stable one
for the same value of the velocity. The agreement we find
with experiment [8] is another piece of evidence which
tends to show that this hypothesis is correct, but clearly a
full theoretical justification would be highly desirable.

In this paper we will show that, in the presence of neg-
ative anisotropy, the spectrum for the selected values of
the stable finger width contains, roughly speaking, a part
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which is merely the spectrum of the standard finger (i.e.,
without anisotropy) slightly shifted toward larger width
by the effect of the negative anisotropy, as we could ex-
pect intuitively from the argument given above. Howev-
er, we will see that, quite unexpectedly, there appears
also a branch which is an exceptional solution of the
equations. More precisely this branch mixes slightly with
the standard spectrum to produce the global spectrum
that we actually obtain. Now the surprising observation
is that the experimental result follows closely the excep-
tional branch. This provides naturally a nice and simple
explanation for the experimental data. But we stress that
we do not know why this rather peculiar branch is select-
ed rather than, for example, the branch with lower finger
width. Anyhow the existence of the exceptional branch
is of general interest because we will see that its appear-
ance is rather generic and is not linked to a very specific
feature of the present problem. Therefore, although it is
the first time to our knowledge that such an exceptional
solution arises in a selection problem the possible ex-
istence of such a branch should be kept in mind when
other shape selection problems are investigated. A short
account of this work has already been published [8] to-
gether with the experiment and the results of a numerical
simulation.

II. SELECTION FOR SMALL SURFACE TENSION

We start with the standard boundary condition due to
surface tension, namely, the Laplace equation
¢—do=b>T(8)/12uR, where b is the cell thickness, u
the viscosity of the viscous fluid, and R the radius of cur-
vature of the interface. As usual we take the half width
of the cell as unit length The two-dimensional velocity
field u (u,,u,) in this viscous fluid is related to the pres-
sure p by Darcy s law u=—(b2/12u)Vp, which gives

= —pb?/12u for the velocity potential ¢. In Laplace
equation ¢, corresponds to the pressure inside the finger.
As we have indicated in the Introduction we take for the
surface tension T(O)=T[1+4+28cos(m6)], which
amounts to retain the dominant Fourier component in
T(6). For the experiment that we consider m =4 should
give a fair representation of the surface tension.

It is convenient for our purpose to rewrite the above
boundary condition [12] in a somewhat different way.
One takes the derivative of this relation with respect to
arclength along the finger and combines it with the rela-
tion between finger velocity U and the fluid velocity:
n-u=Ucosf. If we take the fluid velocity at infinity
equal to unity we have AU=1. One obtains in this way
the following differential equation along the finger [12]:

4 my p=my G | L L s
€ [1+8(f™+f )]dz +f2 2Au—1, (1)

where e=b2T /6pU and f=e'% u=u, —iu, is the com-
plex fluid velocity and z =x +iy the complex position.

In order to perform an analytical study of the problem
we will restrict ourselves to the regime of small surface
tension 7, or equivalently of large finger velocity U,
which corresponds to small €. This allows us to make use
of a technique already employed [13] for standard
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Saffman-Taylor fingers where a singular perturbation
analysis of the nonlinear differential equation (1) can be
done in this limit. The selection is obtained by requiring
that no transcendental divergent term is produced by the
first term of Eq. (1), which acts as a singular perturbation
for small surface tension.

We find the selection condition by continuing analyti-
cally Eq. (1) out of the finger into the viscous fluid. For
small surface tension T, we can approximate u by its
T=0 value, namely [1],

lE-d—z=}\+(1--}»)tanh(1rw/2) , (2)
u dw

where w =¢+iy is the complex velocity potential. The
possible transcendental corrections to the T'=0 solution
are generated by the singularities of f, where the first
term of Eq. (1) is no longer small. To lowest order in T,
these are the singularities of the T=0 solution
fo=(2Au—1)"12 which diverges for u=1/2A. For
analytical convenience we restrict our study to finger
widths A in the vicinity of A=}, because in this case
u~1 and the singularities correspond to large w and z
and we obtain simple analytical expressions. But our
study could be extended in principle to other values of A
at the price of more numerical work.

In this regime of large w, we have u =1+2(1—A_)e
On the other hand, f~™ is negligible compared to f™

—Tw

near the singularities of f. Taking x =e ~™/?=e ~™/2 a5

new variable we obtain

e | T [ x4 ja+ormwd |+ L1452, @)
2 dx f

This is just what is found in the isotropic case, except for
the § /™ term due to anisotropy.

As usual we rescale this equation, by f=
Fand x =[&(7/2)*]'/3X, into

[E(1T/2)2]_1/3

mydF |,
(1+DF )XdX

1

—=C+X?, 4)

X— 72

X

where C is a rescaled finger width and D a rescaled an-
isotropy

2A—1 8

[e(7 /201 ° P le(m/2))]m7 ®
These relations provide scaling laws relating situations
with different A, €, and 6, but same C and D. Naturally
these scalings are valid only for small € and 2A—1, as we
mentioned above. For consistency we have also to as-
sume a small 8 in order to have a finite value for our pa-
rameter D.

The nonlinear differential equation Eq. (4) has to be
solved with the boundary condition F =1 /y for large |y|
in the domain |argy | <7 /2 since we require that no tran-
scendental divergent term is produced on the finger. For
D=0 we have the standard Saffman-Taylor finger and,
with these boundary conditions, there are solutions of Eq.
(4) when the “nonlinear eigenvalue” C takes a discrete set
of values C,, well approximated by the result of a WKB
analysis  [13], namely, C,=2?3(n+%)*® and



4174

n=0,1,.... These correspond to the well known
branches of the finger width spectrum, all starting from
A= when the surface tension goes to zero.

In the presence of anisotropy D0, Eq. (4) can be
solved numerically. This is done conveniently by taking
In x as a variable and [6] following for large |x| the
Stokes line argx =w/3, as an integration path, while
turning toward the real axis when |x|~1. By requiring
that F is real on the real axis [13], one ensures that
F(y*)=F*(y) and that F(y) behaves as 1/y for large |y|
and —m/2=<argy <0. As a function of D the possible
values of C do obviously change. We find naturally
several branches, each one going to the corresponding C,
for D=0. The result for the lower branches of C(D) is
displayed on Fig. 1 for m =4. As noted in [8], our result
agrees quite well for the three lowest branches with the
direct numerical calculation on the finger in the regime of
“large” surface tension. This can be seen in Fig. 2 of Ref.
[8]. This is rather surprising since 2A—1 is not small at
all where this agreement occurs, but such a surprisingly
good agreement has also been found in the sector
geometry [5]. At the very least this shows that our as-
sumption of small 21 —1 is not a severe restriction.

On the other hand [8], there is a qualitative disagree-
ment for the higher branches. Indeed the direct calcula-
tion on the finger displays the merging phenomenon of
neighboring branches already found for the Saffman-
Taylor finger in the sector geometry [5]. Instead the solu-
tion of Eq. (4) gives a kind of ‘“‘anticrossing” between
branches as can be seen from Fig. 1. One can also de-
scribe qualitatively Fig. 1 by saying that, for large D, the
n =0 branch ends up on the natural continuation of the
n =1 branch; similarly the n =1 branch switches to the
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FIG. 1. Spectrum for the selected values of the rescaled
finger width C as a function of the rescaled anisotropy D, for
m=4. The branches corresponding to n=0, 1, 2, (partly) 3,
and 4 are displayed. The dashed line corresponds to
D=2.5C*",
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n=2 branch and so on. The switch between branches
occurs for D ~2.5C%7, as it is seen in Fig. 1 (this specific
relation will be justified later on).

It can be seen from Fig. 2 of Ref. [8] that the anticross-
ing between branches and the merging in the direct calcu-
lation occur essentially at the same location, that is
2A—1=0.18""/B'/? with B=¢/8; this shows clearly
that these behaviors are directly related. Actually, if the
numerical calculation of Eq. (4) is not precise enough,
one switches easily from anticrossing to merging. How-
ever, the precision of our numerics is good enough and
we do not think that the origin of the discrepancy comes
from numerical imprecision. We believe rather that an-
ticrossing occurs for low anisotropy and surface tension,
whereas branch merging happens for larger values. But
one cannot exclude the possibility that the approxima-
tions leading to Eq. (4) are responsible for the switch
from one behavior to the other. Anyway we note that the
difference is irrelevant experimentally since the higher
branches are not directly observable; only the lower one
is relevant. The higher branches are observed indirectly
(see above): only the location where merging or anticross-
ing occurs is important, the specific behavior cannot be
seen.

III. THE LINEARIZED EQUATION

In order to understand the remarkable anticrossing
behavior found in Fig. 1, we have performed an approxi-
mate analysis of Eq. (4). Although, it is valid in principle
only for large values of C (that is small a, see below) this
analysis has been quite successful even for the n=0
branch in the case of the standard Saffman-Taylor finger,
in the linear [13] or the sector geometry [5]. In the
present case similarly we will see that it leads to nearly
exact results. For our purpose it is convenient to rescale
Eq. (3) differently, or equivalently to rescale Eq. (4) by
F=C"'2Gand X=C'?Yinto

d

aYE

d
YdY

1

a m+1 — 2
G+——G +—=14+Y",
m+1 G?

(6)

with a=C*/? and a=DC~"™’2. For small a, G will be
very nearly equal to the zeroth order solution
Go=(1+Y*"12 almost everywhere. If we set
G =G,+h, the small difference h will be solution of the
equation obtained by linearizing Eq. (6). Introducing
H=h(14+aGy), we have

d | ag| 2. GJ°
Y—— Y= |==H—————
dY | dY a 1+aGy
d m
+YH[Y2(G(3)+aGO . M

When this equation is solved numerically, one finds for
all branches results for C (D) which are almost identical
to those obtained from Eq. (4) and given on Fig. 1 for
m =4, Therefore we can consider Eq. (7) as essentially
equivalent to our original problem Eq. (6).

Now we can have more insight in the solutions of Eq.
(7) in the following way. The solubility condition is that
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H should be real on the real Y axis. In the vicinity of the
origin Y =0, we can solve Eq. (7) to dominant order as
172

2 InY

a(l+a)

H ~exp (8)

[naturally H is no longer small in this region, but we are
just solving the same equation (7) by looking at its analyt-
ical continuation]. Near the origin, on the positive imagi-
nary Y axis, H has an argument ¢(a,a) and from Eq. (8)
the solubility condition reads

2 172
_o_m|_ 2
pla,a)=nm 2 |a(l+a) ©)
or
2
C*3=2(1+a) n—S’L‘T‘r"L) , (10)

which is the same as for the standard Saffman-Taylor
finger [13], except for the factor 1+a and the fact that
@/ is no longer equal to —%. We have therefore the
same branch structure as for the standard finger.

In order to find ¢(a,a), we consider what happens on
the positive imaginary axis for 0<|¥| <1. We consider
first the regime of small a. In this case the right hand
side of Eq. (7) is dominated by its first term and the argu-
ment of H stays constant since G| is real on this interval.
H is approximately given by the WKB expression

G- 174
0

1+aG6"]

2 12 vdY
;] I+

— 172
G;3

1+aGr

Xexp , (11)

which matches Eq. (8) in the vicinity of Y=0. This
description does not hold anymore in the vicinity of the
turning point Y =i where G, diverges: the first term of
the right hand side of Eq. (7) vanishes while the second
one diverges and the argument of H is no longer con-
stant. Therefore we have to solve Eq. (7) in the vicinity
of Y=i and ¢(a,a) is the limiting value of the argument
of H far away from Y =i.

In the vicinity of Y=i, we have G, 2=~2i(Y—i).
We can then simplify Eq. (7) by a change of variable and
a rescaling.  Setting Y=i[1—Z(a?/8)"7] and
H=(4a)~ g, we obtain in the limit of small a

d2g Z(m +3)/2
dz®

— 3+m —
— 5s2__ 2 T (m+5)/2
2g Z'"/2+p —i—Z 4 pZ m ,

(12)

where we have set p=a(4a)~™/7. This equation must be
solved with the conditions that, for |Z|— «, g vanishes
in the Stokes sector 27/7<argZ <6w/7 and
67 /7 <argZ <107 /7. This is just the translation [13] of
the conditions imposed on Eq. (4) or (7). However, g
diverges in general for argZ =0 and large Z correspond-
ing to the behavior given by Eq. (11).

We see that, in this limit of small a, ¢(a,a) depends ac-
tually on the single parameter
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=4 -0 __ 8 (13)
P a7 e e aA— 1P
We can check this result by calculating ¢(a,a) from our
results Fig. 1 through Eq. (9) and plotting the results in
terms of p. If ¢ depends on this single parameter, the re-
sults for the various branches should fall on top of each
other to give a single curve. This is done in Fig. 2 for
m =4 and the branches n=0,1,2,3. We do not find a
single curve, but this is not so surprising since we are not
in the limit of small a for these low order branches. On
the other hand, the curves seem to converge toward a
jump of —m for @ at p~1.1. This is the translation of
the switch between branches on Fig. 1 discussed previ-
ously. Indeed a change of ¢ by — 7 transforms effectively
the n branch into the n +1 branch. And p~=1.1 corre-
sponds to the location D ~2.5C3/7 of the anticrossing,
which we have seen above.

There is now a simple explanation for the jump of ¢ by
— that we have just found. Indeed in the vicinity of
Y =i, Eq. (11) reduces to

Z(m+3)72 —1s4
&=y Zm/2+p
— prZ Z(3+m)/4)
Xexp \/2f dZ—(‘p—_*_—ZT"—/Z)l—/2 (14)

The complex prefactor ¥ depends on p. If it vanishes for
some value of p, the image of ¢ in the complex plane goes
through the origin and this produces a switch of t+# for
the argument of y. Now if ¥y =0 this means that the
divergent term Eq. (11) is absent. Since it reduces to Eq.
(8) in the vicinity of Y =0, we do not have this divergent
behavior. Rather from Eq. (7), we have in this vicinity
H(Y)~0(Y?)+0( Y{Z/“““)]l/z), which goes to zero for
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T
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1 |
7 D/C%7
FIG. 2. Plot of —¢(a,a)/ as a function of D /C?¥7=2%p,

as obtained from Fig. 1 and Eq. (9), for the branches n =0, 1, 2,
and 3.



4176

Y =0. Since H must also go to zero for Y — «, we have
in this case a solution of Eq. (7) which is real on the real
Y axis, and the solubility condition is satisfied [when we
go outside the WKB regime, we have to generalize the
condition ¥ =0 into H(0)=0]. Therefore we have for
¥ =0 a new solution for the Saffman-Taylor finger. But
this is not a regular solution belonging to the family given
by Eq. (10). This is rather a singular or exceptional solu-
tion. This provides our physical interpretation for the
switch between branches observed in Fig. 1. It is pro-
duced by an exceptional solution given by D ~2.5C%/7.
When a regular branch meets this exceptional solution, it
switches on it and then switches to the next regular
branch encountered. This last switch may occur toward
larger D, which produces the anticrossing behavior. It
could also happen toward lower D which gives rise to the
merging phenomenon (see below).

IV. THE EXCEPTIONAL SOLUTION

We will now go in more detail into the calculation of
v(a,a). We will see that, although the basic physical pic-
ture given above is correct, the actual situation is slightly
more complicated. When we have an exceptional solu-
tion, Eq. (12) has a solution which goes to zero, for
|Z|— o, in the three Stokes sectors —27/7
<argZ <2w/7, 27 /7 <argZ <6mw/7, and
617 /7<argZ <10mw/7. This is quite analogous to our
original problem Eq. (7) except that presently we have
Stokes sectors with an angle 477 /7 instead of 47 /3. In or-
der to complete the analogy, we turn our reference axis
by an angle 4 /7, by setting Z =e*™7¢ and g =ge 2"/,
When we substitute into Eq. (12), we obtain the same Eq.
(12) except that Z and g are replaced respectively by &
and g, and p is replaced by p=pe %™ /7. Now we want
a solution which goes to zero at infinity for the three sec-
tors in —6m/7 <argf <6m/7. As for Eq. (4) or (7) this is
obtained if the solution which goes to zero in
2w/7<argf<6m/7 and —27w/7<argf<2m/7 for
|&|— oo is real on the real £ axis. Clearly this will be pos-
sible for some discrete values of p if p is real, in complete
analogy with Eq. (7). And indeed one finds numerically
such a solution for p~=—0.88 (others are found for
p=—2.9,—5.26,...). However, this corresponds to a
real positive value p =0.88 only for m =3.5, not m =4.
The p value is also slightly different from the value 1.1
found above. Therefore we do find an exceptional solu-
tion, but it is slightly away from what we expected. We
note that it is clear from the start that we have to vary
both p and m to find generically an exceptional solution.
Indeed if we vary only p, ¥ will wander in the complex
plane with no reason to go through the origin. This is
only by varying also m that y can become zero generical-
ly.

Therefore in order to understand what happens for
m =4, we are led to consider other values of m. The re-
sults for the finger width spectrum C as a function of an-
isotropy D is displayed on Fig. 3 for m =3.5. We see on
Fig. 3 that, when we lower m starting from m =4, the
branches get increasingly well separated with the an-
ticrossing structure fading away rapidly and being al-

R. COMBESCOT 49

FIG. 3. Same as Fig. 1 for m =3.5.

ready basically absent for m =3.5 (however, the switch
phenomenon from one branch to the next one is still
clearly visible). For m=3 and 2 (not shown) the
branches rise even more rapidly as a function of D, and
they look unrelated. Although it is not of direct interest
for our problem, we also show on Fig. 4 the results for
m =4.5 because, instead of anticrossing, they display the
phenomenon of branch merging between the branches
n=0 and 1. As a result branch n =2 switches to branch
n =1, similarly n =3 switches to n =2, and so on (the
same qualitative behavior is found for m =5 and 7, but
with the branches being well separated). Actually we be-
lieve that, for m =4, such a branch merging occurs be-

o n=3

FIG. 4. Same as Fig. 1 for m =4.5.
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tween the low D parts of the n =3 and 4 branches, but
our numerical precision is not good enough to be sure of
it. We note that the continuous evolution of the spec-
trum when m is changed is clearly seen from Figs. 1, 3,
and 4.

We consider now the behavior of ¢ defined by Eq. (9).
The results for m =3.5 are shown on Fig. 5. This value
m =3.5 found above corresponds actually to a qualitative
change in the behavior of ¢ as we will see. Let us first
consider the case m =2 which is simple. Indeed when
@(p) is calculated numerically directly from Eq. (12), one
finds for m =2 that —@(p)/7 rises regularly from its
p =0 value [13] of 4. It goes for large p to an asymptotic
limit ¢@,, which can be obtained analytically as
—@./m=(2m +4)/(m +7) [this is done from a symme-
try argument on the WKB solution of Eq. (12), or by a
Borel resummation as in [13]). Moreover the resulting
values of @ are in very good agreement with the values of
¢@(a,a) obtained by direct integration of Eq. (4), making
use of Eq. (9): in contrast to the case m =4, the various
branches fall essentially on a single curve for ¢(p) which
agrees itself with the result from Eq. (12). For m =3, the
results are similar, except that —@(p)/7 obtained from
Eq. (12) has a small dip for p =0.4 before rising and there
is in this dip region a small discrepancy between this re-
sult from Eq. (12) and the direct integration of Eq. (4)
(mostly for the branch n =0 which does not show any dip
at all).

For m=3.5, the result from Eq. (12) is markedly
different as it can be seen on Fig. 5: —@(p)/7 decreases
rapidly and linearly as p increases. Actually this result

0 |

) I I S S
6 1 2 3 4 S5 6 p

FIG. 5. Plot of —¢(a,a)/m as a function of p, as obtained
from Fig. 3 and Eq. (9), for the branches n =0, 1, and 2. Branch
n =3 is undistinguishable from branch n =2 on this graph. The
dashed line indicates —@(p) /7 obtained directly by integration
of Eq. (12). The arrows indicate the jumps due to the exception-
al solutions.
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can be obtained analytically by a Borel resummation.
One finds (in perfect agreement with numerics)
—@(p)/m=34—2V2p /7 (except for the additional jumps
by 1 which occur for the exceptional solutions at
p=0.88, 2.9,... if we let m—3.5=0_). On the other
hand, the results from Eq. (4) are very similar to those of
m =3: except for the n =0 branch at small p, they fall
essentially on a single curve for —@ /7, which rises slow-
ly for large p. For m =4, the result for —¢(p)/7 from
Eq. (12) is similar to the one found for m =3.5. It agrees
with the results from Eq. (4) only for small p.

This behavior can be understood qualitatively in the
following way. One notices that Eq. (12) has a singular
point for Z,=(—p)?/™, which is a branch point for the
corresponding WKB solution Eq. (14) [one has to take
the determination corresponding, in Eq. (14), to go
around Z, on the large |Z| side]. Now the solution of
Eq. (12) must vanish for |Z|—> in the sectors
2w/7 <argZ <6 /7 and 67 /7 <argZ < 10w /7. Numeri-
cally we enforce these conditions by starting on the
Stokes line argZ = 6w /7 for large |Z|, with g and dg /dZ
equal to zero. We integrate then Eq. (12) through the
sector 27 /7 <argZ <6m/7 to go on the real Z axis and
find ¢(p). Depending on the value of m, Z is or is not in
the sector 0 <argZ < 6w /7 relevant for our calculation.
For m =2, Z, is on the real negative axis and the branch
point is irrelevant for our calculation. This corresponds
to the small rise of —¢@(p)/m from % to & when p goes
from O to .

For m =3 one has to realize that, because of the
branch point, the lines where, in Eq. (14), the argument
of [%dz Z¥*™/4p+Z™/2)"1/? is constant are distort-
ed and are no longer straight lines starting from Z =0 as
in the case p=0, or m =0. This is also true for our
Stokes lines where the above argument is 7/2 or 37 /2
(Stokes line 27 /7 or 67 /7). In particular the Stokes line
6w /7 starts actually with argZ =67 /(7+m) from Z =0.
For m=3, this is 3w/5, which is less than
argZ,=2mw/m =21 /3. Therefore the branch point Z is
again not in the Stokes region relevant to our calculation
(although it is close). This allows one to understand why
@(p) for m =3 is similar to ¢(p) for m =2.

Now for m=3.5, the Stokes line which has
argZ =6m/7 for large |Z| starts from Z=0 with
argZ =4m/T=argZ,. Therefore the branch point Z, is
no longer in an irrelevant Stokes region (actually the
67 /7 Stokes line wraps completely around the cut which
goes from O to Z, and leaves again Z=0 with
argZ =20m/21 and then goes to argZ =6m/7 for large
Z). This explains why we find a marked change of
behavior for m =3.5 (we note, however, that the jumps
by 1 occurring at the exceptional solutions make
—@(p)/m effectively rise as a function of p, just as for
m <3.5; this provides a kind of continuous transition).
For m =4, the cut [0,Z,] is again in the relevant Stokes
region and —¢@(p)/m decreases again rapidly as a func-
tion of p. One can actually understand this behavior
semiquantitatively by saying that, in addition to the stan-
dard contribution to ¢ found for m <3.5, which has a
weak p dependence, there is an additional contribution to
@ from the integral around the cut in Eq. (14). This argu-
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ment gives a result which is in good agreement with the
numerical integration of Eq. (12).

To summarize this discussion, when the branch point
Z, is in an irrelevant region, as it happens for m <3.5,
—@(p)/m has a gentle rise. When the branch point is
relevant, which happens for m 23.5, —¢(p)/m drops
rapidly as a function of p. This gives us a simple under-
standing of @(p) as it comes out from Eq. (12). But this
does not explain the discrepancy for m =3.5 and 4 be-
tween these results and the direct calculation from Eq.
(4). This discrepancy is at first surprising since for
m =3.5, as we have mentioned, the results of the various
branches for ¢(p) fall essentially on a single curve, giving
the impression that a WKB limit is already reached.

This can be understood as follows. One can check that
the condition for the WKB approximation is satisfied as
soon as C is large which explains why it works already
for the branches that we have considered. On the other
hand, we have seen that the branch point Z, plays an
essential role in our results for the solution of Eq. (12)
(our integration path for example has to satisfy
|Z|>|Z,|). However, when we have obtained Eq. (12),
we have neglected (a?/8)!/7Z with respect to 1 because a
was assumed to be small. When this is not done, one can
still evaluate (by taking G, as a variable) the argument of
[1dY/¥)G53*(1+aG )™, which comes in Eq.
(11), with Y, being the branch point which satisfies
1+aGg =0. One can then easily see that this argument
is larger than the corresponding value (7+m)/2m ob-
tained in the limit of small a(essentially when we write
Y=i[1—Z(a?/8)!7] instead of Y =i, we effectively in-
crease the considered argument). This effect is larger for
larger p and lower branches [the relevant parameter is
@*/8)V7 | Zy| ~a¥™.

This means that for large p and low branches, the
branch point is pushed in the Stokes region where it is
ineffective. This is as if we had effectively lowered the
value of m. This explains why the results from Eq. (4) for
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m =3.5 and low branches are similar to those of Eq. (12)
for m =3 (and even m =2 for the branch n=0). Similar-
ly when we go to lower branches for m =4 in Fig. 2, we
shift effectively toward the behavior corresponding to
lower m [for example, the branch n =0 in Fig. 2 is very
similar to what one obtains from Eq. (12) for m =3]. If
we were to go to higher branches we would progressively
go to the results for ¢(p) obtained from Eq. (12) for
m =4. But since a?/™=0.3 implies C ~40 for p=1, this
would require us to go to much higher branches. This
would be quite difficult numerically. On the other hand,
we can merely check what we have just said by setting
Y=i[1—Z(a?/8)"7] and H=(4a) '’g in Eq. (7
without assuming further that a is small as in Eq. (12).
When the corresponding equation is solved for ¢(a,a),
one obtains results in perfect agreement with our argu-
ments.

In summary we have been able to understand the ori-
gin of the peculiar anticrossing behavior found in our
spectrum. It is due to the existence of an exceptional
solution for the Saffman-Taylor finger, different from the
ones corresponding to the ordinary branches of the spec-
trum. This exceptional solution is expected to occur for
m =3.5 for high values of C. But for lower values of C
one finds an actual behavior which corresponds to a value
of m lower than the nominal one. This explains why the
anticrossing behavior occurs for m =4 for the lower
branches instead of m =3.5.
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